SCHOOL OF APPLIED MANAGEMENT SCIENCES

Gastronomy and Culinary Arts Program

GENS 212 | Course Introduction and Application Information

Course Name
History and Philosophy of Astronomy
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
GENS 212
Fall/Spring
3
0
3
5

Prerequisites
None
Course Language
English
Course Type
Service Course
Course Level
First Cycle
Mode of Delivery -
Teaching Methods and Techniques of the Course -
Course Coordinator
Course Lecturer(s)
Assistant(s) -
Course Objectives This course will examine the history and philosophy of astronomy in a way accessible to students of all majors and levels. Commencing from prehistory, emphasis will be placed both on lessons learned from past scientific developments and on open issues to stress the dynamics of discovery, including dark matter and cosmological questions about the Big Bang and the “multiverse.” Analysis of the impact of astronomical research will consider industrial benefits, mention of the novel phenomenon of commercial space and societal change from the artistic, literary, and philosophical standpoints, including also science straying into metaphysics. The contribution given by women throughout history will be explicitly showcased to provide a balanced view. Finally we shall consider the colonization of Mars, the dream of interstellar exploration, and the history and philosophical implications of the possible discovery of alien life in the universe, including intelligent civilizations.
Learning Outcomes The students who succeeded in this course;
  • Will be able to analyze historical astronomy issues at the elementary quantitative level (arithmetic and basic geometry);
  • Will be able to draw conclusions about the challenges of scientific discovery and astronomy in particular by using basic knowledge;
  • Will be able to discuss critically the interaction of economic, social and cultural factors determining scientific progress;
  • Will be able to perform a literature review on historical astronomy.
  • Will be able to define the general characteristics of unfolding scientific developments.
Course Description

 



Course Category

Core Courses
Major Area Courses
Supportive Courses
Media and Management Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Related Preparation
1 Introduction, the Solar System, our Universe No-advanced-math based concept summary and essential concepts from: NASAS: Planets, Moons, Asteroids, Comets and Meteors. BSF: Part I; BSFWB: Ch. 1; PINLN
2 Prehistory, archeoastronomy, ancient Egypt No-advanced-math based concept summary and essential concepts from: RMPI: pp 3-47; TESA: Ch. 4 PINLN
3 Basic naked-eye astronomy, observing the sky No-advanced-math based concept summary and essential concepts from: PINLN
4 Babylonian mathematics and astronomy No-advanced-math based concept summary and essential concepts from: TESA: Ch. 1-3, 5 PINLN
5 Greek philosophy and astronomy I No-advanced-math based concept summary and essential concepts from: TESA: Ch. 6 HWP: Part I–The Presocratics PSC: Prologue PINLN
6 Greek philosophy and astronomy II No-advanced-math based concept summary and essential concepts from: HWP: Part II–Socrates, Plato, Aristotle GINPTO PINLN
7 The Middle Ages and Astronomy in Islam No-advanced-math based concept summary and essential concepts from: PSC: Ch. 2 (Historical Perspectives) PINLN
8 The Copernican Revolution, Tycho, and Kepler No-advanced-math based concept summary and essential concepts from: HWP: Bk 3, Pt. VI–The Rise of Science PINLN
9 Galileo, the telescope, Newton, and mechanics No-advanced-math based concept summary and essential concepts from: PINGT; PSC: Ch. 3, 5 (gravitation) PINLN
10 Midterm I
11 Triumphs and failures. Einstein and relativity No-advanced-math based concept summary and essential concepts from: PSC: Ch. 8, 9, 26 SGT: Part II PINLN
12 Space exploration. The race to the Moon No-advanced-math based concept summary and essential concepts from: NASARS: 1-26; BSFWB: Ch. 4; BSF: Ch. 9 PINLN
13 Project I
14 Exploring Mars. Interstellar space. Alien life No-advanced-math based concept summary and essential concepts from: BSFWB: Ch. 9; BSF: Ch. 13; NASAINS; ESAEXB: II.3; PINLN
15 Project II
16 Final exam

 

Course Notes/Textbooks

NASA Science, Our Solar System, https://solarsystem.nasa.gov/solar-system/our-solar-system/overview/  : NASAS.

A. B. Chace, The Rhind Mathematical Papyrus (Vol. I) (Mathematical Association of America, Oberlin, Ohio, 1927): RMPI.

O. Neugebauer, The Exact Sciences in Antiquity (Dover Publications, New York, 1969): TESA.

B. Russel, History of Western Philosophy (George Allen and Unwin Ltd., Great Britain, 1947): HWP.

T. S. Kuhn, The Structure of Scientific Revolutions (The University of Chicago, Chicago, 1970): SOSR.

K. Popper, The Logic of Scientific Discovery (Routledge, London, 2005): LOSD.

P. Feyerabend, “How to defend society against science,” in Scientific Revolutions, Ian Hacking, Ed. (Oxford University Press, Oxford, 1981): FEYDS.

O. Gingerich, “Was Ptolemy a fraud?” Q. Jl. R. astr. Soc., 21, 253-266 (1980): GINPTO.

F. Pinto, “Giants’ Talk,” The Griffith Observer, 2-18, 9, 1992: PINGT.

A. Einstein, Relativity: The special and general theory (Methuen & Co Ltd, 1920): SGT.

G. W. Mason, Physical Science Concepts (BYU Univ. Press, 1997): PSC.

NASA, Adventures in Rocket Science (NASA, 2008): NASARS.

D. Doody and G. Stephan, Basics of Spaceflight: Learners’ Workbook  (JPL, 1995): BSFWB.

D. Doody, Basics of Spaceflight (JPL, 2011): BSF.

NASA, Mars InSight Launch Press Kit (2018): NASAINS.

F. Pinto, “Engines powered by the forces between atoms,” Am. Sci., 102, 280-289 (2014): PINEFBA.   

ESA, Exobiology in the Solar System & The Search for Life on Mars (1999): ESAEXB.

F. Pinto, Lecture Notes: PINLN.

Suggested Readings/Materials

-

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
Presentation / Jury
Project
2
40
Seminar / Workshop
Oral Exams
Midterm
1
20
Final Exam
1
40
Total

Weighting of Semester Activities on the Final Grade
3
60
Weighting of End-of-Semester Activities on the Final Grade
1
40
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Theoretical Course Hours
(Including exam week: 16 x total hours)
16
3
48
Laboratory / Application Hours
(Including exam week: '.16.' x total hours)
16
0
Study Hours Out of Class
16
4
64
Field Work
0
Quizzes / Studio Critiques
0
Portfolio
0
Homework / Assignments
0
Presentation / Jury
0
Project
2
14
28
Seminar / Workshop
0
Oral Exam
0
Midterms
1
5
5
Final Exam
1
5
5
    Total
150

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

Successfully applies theoretical and practical knowledge and skills in Gastronomy and Culinary Arts

2

Carries best practices in terms of work and food security, safety and hygiene in food production

3

Appreciates, evaluates and makes decisions regarding to visual, textual and nutritional data with respect to food production and presentation

4

Recognizes and evaluates the impact of gastronomy on culture and society

5

Assumes responsibility for solving complex problems that may occur in the field of Gastronomy and Culinary Arts, both individually and as a team member

6

Evaluates the knowledge and skills acquired in the field of Gastronomy and Culinary Arts with a critical approach and effectively communicate their ideas and suggestions for solutions in written and oral form.

7

Possesses necessary knowledge and skills in relevant fields such as gastronomy, design, law and management and effectively apply them to the practice of Culinary Arts

8

Uses the technological tools related to Gastronomy and Culinary Arts effectively

9

Updates and improve the knowledge, skills and competencies related to Gastronomy and Culinary Arts with lifelong learning awareness and sustainability with an ethical approach

10

Collects data in the areas of Gastronomy and Culinary Arts and communicate with colleagues in a foreign language. (European Language Portfolio Global Scale”, Level B1)

11

Speaks a second foreign at a medium level of fluency efficiently

12

Relates the knowledge gained through the history of humanity to the field of expertise

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 


 SOCIAL MEDIA

NEWS |ALL NEWS

Izmir University of Economics
is an establishment of
izto logo
Izmir Chamber of Commerce Health and Education Foundation.
ieu logo

Sakarya Street No:156
35330 Balçova - İzmir / Turkey

kampus izmir

Follow Us

İEU © All rights reserved.